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Preconditioned Minimal Residual Methods 
for Chebyshev Spectral Calculations* 
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Hampton, Virginia 23665, and Istituto di Anal&i Numerica del CNR, 27100 Pavia, Italy 

The problem of preconditioning the pseudospectral Chebyshev approximation of an elliptic 
operator is considered. The numerical sensitivity to variations of the coefficients of the 
operator are investigated for two classes of preconditioning matrices: one arising from finite 
differences, the other from finite elements. The preconditioned system is solved by a conjugate 
gradient type method, and by a DuFort-Frankel method with dynamical parameters. The 
methods are compared on some test problems with the Richardson method [ 133 and with the 
minimal residual Richardson method [21]. $1 1985 Academic Press. Inc. 

1. INTRODUCTION 

Spectral methods are today widely used in the numerical solution of a variety of 
boundary value problems (e.g., [9, 14, 163). Their better accuracy makes them 
preferable to the more classical finite difference or finite element methods in many 
situations, especially for smooth problems (see [14, Chaps. 3 and 81). 

Improving the computational efficiency of spectral methods is one of the main 
purposes of the current investigation on these methods. In this direction an impor- 
tant aspect is the definition of spectral approximations in “complex” geometries: dif- 
ferent techniques of mapping and patching have been proposed to reduce the com- 
putational domain to a simple domain, such as a square or a cube. Another 
relevant aspect is to hnd efficient techniques of solution of the algebraic systems 
arising from spectral methods. Actually, spectral approximations of elliptic boun- 
dary value problems lead to full and very ill-conditioned matrices. In the special 
case of constant coefficient operators, efficient direct methods which exploit the 
orthogonality of the spectral basis have been proposed [9, 10,221. For nonconstant 
coefficient problems, direct methods are impractical, because of the typically large 
size of the systems to be soved. Instead, considerable attention has been devoted 
after Orszag’s paper [ 131 to the simultaneous use of iterative methods and precon- 
ditioning techniques. 

* Research was supported by the National Aeronautics and Space Administration under NASA Con- 
tract NASl-17070 while the authors were in residence at ICASE, NASA Langley Research Center, 
Hampton, VA 23665 and by the Istituto di Analisi Numerica del CNR, Pavia, Italy. 
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Actually, variable coefficient operators can be evaluated in a spectral way using 
fast Fourier transform techniques. Therefore, iterative methods of solution which 
require the evaluation of the residual at each iteration are particularly well suited 
for spectral approximations. 

In the present paper, we present and discuss the results of a number of numerical 
tests on the iterative solution of preconditioned systems arising from Chebyshev 
approximations. The first part is devoted to the analysis of the preconditioning of 
spectral matrices. The sensitivity to variations of the coefficients, to leading and 
lower order terms is investigated. Besides the standard finite difference matrix 
proposed in [ 131, we consider a finite element matrix, which essentially retains the 
same preconditioning properties, being moreover symmetric. In both cases, an 
incomplete factorization satisfying the row-sum agreement criterion is used. 

Some iterative methods are considered next. The aim of our analysis is to 
investigate their behavior and performances when applied to the solution of 
algebraic systems arising from approximations of spectral type. Therefore, they will 
be compared with other iterative methods already widely used for the same systems. 
A preconditioned conjugate gradient method (which has been recently used in fluid 
dynamics and transonic flow calculations via finite elements, see [6] and the 
references therein) was found to be rather slow on the tested problems, although it 
may be very robust in more complicated situations. The DuFort-Frankel method 
(first applied by Gottlieb et al. [7, 81 to spectral calulations and here considered as 
a, 2-parameter preconditioned iterative method) yields good results when the 
optimal parameters are used. In order to overcome the difficulty of finding such 
parameters, we propose a modified version of the DuFort-Frankel method, devised 
according to a “minimal residual” strategy. The new method, compared with other 
iterative techniques in the literature, was the fastest in terms of speed of con- 
vergence. 

In the paper these methods are tested on linear elliptic problems. However, the 
interest of this investigation goes far beyond such kind of test problems. Indeed, 
more complicated problems, such as the Navier-Stokes equations, are reduced in 
most of the current spectral approximations to a sequence of linear elliptic 
problems, whose resolution can be carried out by the methods proposed here. 

Iterative methods coupled with suitable preconditioning techniques can 
dramatically reduce the gap in computational efficiency between spectral methods 
and more conventional methods such as finite differences or finite elements. The 
extra cost required by spectral methods is, however, more than compensated by the 
superior accuracy they produce. This means that the accuracy required in most 
applications is attained by spectral methods with a considerably lower number of 
unknowns, hence with globally less computational costs. 

Part of this work has been made while the authors were visiting the Institute for 
Computer Applications in Science and Engineering (ICASE). The numerical results 
reported here were obtained on the Honeywell 6040 at the University of Pavia. 
Programs were written in double precision. The eigenvalues of Section 2 were 
obtained by EISPACK routines. 
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2. THE PRECONDITIONING OF SPECTRAL MATRICES 

Let L be a smooth second-order elliptic partial differential operator over the 
interval Sz’ = ( - 1, 1) or the square Q2 = ( - 1, 1)2. We consider homogeneous 
Dirichlet boundary conditions for L, i.e., functions on which L acts will be assumed 
to vanish identically on the boundary. L,, will denote the Chebyshev pseudospec- 
tral approximation of L of order N. This means that the approximate solution is a 
polynomial of degree N and derivatives are computed after interpolating the 
function by a polynomial of degree N at the Chebyshev nodes ( (x, = cos(rcj/N)}, 
j = O,..., NifQ=Q’; {x,,xj},0<i,j<Nif52=Q2).Forinstance,if 

Lu = -(4X)%), + b(x)4 

with a(x) >, a, > 0, b(x) > 0, then, 

L&l= - -$ I,(w) + ~,W), 

where IN(r) is the algebraic polynomial of degree N which interpolates 2, at the 
Chebyshev nodes xi, j = O,..., N. Since u is a polynomial of degree N, vanishing at 
the boundary, it is uniquely determined through its values at the interior Chebyshev 
points. These are the unknowns we are solving for. Thus the linear mapping 

defines a matrix of order (N - l), which we still denote by L,,. We identify L,, with 
the matrix which maps the set of values of a polynomial u at the interior Chebyshev 
nodes into the set of values of the spectral approximation of Lu at the same nodes. 
The evaluation of Lspu can be done efficiently by computing each derivative at the 
Chebyshev nodes via fast Fourier transform methods (see, e.g., [9]). 

It is known that L,, has a full structure. Moreover, its condition number is 
0(N4) [9]. These are considered negative aspects of spectral Chebyshev 
approximations versus finite difference and finite element methods. However, a 
tremendous improvement in the computational efficiency of spectral methods comes 
from the observation that L,, can be easily approximated by a sparse matrix A, 
such that the condition number of the matrix A -‘Lsp is close to 1 (see Orszag 
[13]). Recall that the rate of convergence of an iterative method increases as the 
condition number of the matrix is closer to 1. Throughout the paper we take the 
ratio K = K(M) = IAmaxl/l&,,inI as a measure of the condition number of the matrix 
A4, and we refer to it improperly as the condition number even when M is not sym- 
metric. 

In the following, A will denote any matrix having these properties, and it will be 
called a preconditioning matrix. A is assumed to be related to some discretization of 
the operator L, usually by finite differences or finite elements. Sometimes we shall 
relate A to some other elliptic operator 9, with the same principal part as L. 
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In one space dimension, the simplest way of building a preconditioning matrix is 
to use non-equally spaced finite differences at the Chebyshev nodes. The resulting 
matrix is tridiagonal, and it can be factorized in O(N) operations. If Lu = -u,,, the 
corresponding preconditioning matrix is given by A = { aJ}, where 

2 -2 
aij= hih,; n~~-l=hi~,(h,+hj~,); 

(2.1) 
-2 

al,i+ 1 = 
hj(hj+ h,- 1)’ 

hj=xl-xj,l. 

In Table I, the operator Lu= -u,, is considered. The smallest and the largest 
eigenvalue ~min and A,,,, and the ratio K = &,,ax/&,,,n are reported for both the 
matrices L,, and A ~ ‘Lsp. As shown in [22], the largest eigenvalue of L,, grows 
like N4, while the eigenvalues of the preconditioned matrix A -‘Lsp lie in the inter- 
val [ 1.0, 7c2/4]. The spectrum of A - ‘Lsp exhibits a similar behavior even if the ellip- 
tic operator L contains lower order terms (see [ 131). 

The preconditioning properties of the matrix A seem to be rather insensitive to 
the lower order terms of L. Table II shows that the condition number K(A -lL,,) is 
kept small when A is just the finite difference approximation of the second-order 
term of L, and the lower order terms are not prevailing. This implies that the 
preconditioning matrix can be kept fixed in solving nonlinear problems in which 
the lower order terms only change during the iterations. In all the cases considered 
below, the smallest eigenvalue A,,,, is close to 1, and it converges to 1 from above as 
N increases. 

When the magnitude of the lower order terms is exceedingly large, the condition 
number of A - ‘Lsp deteriorates. However, the spectrum is still uniformly bounded 
in N, as shown in Table III. 

A family of variable coefficient operators Lu= -(au,),, with O<a,< a(x)dcr,, 
is considered in Table IV. The eigenvalues of the matrix A - ‘Lsp are bounded 

TABLE I 

Lu = -u,,; Au = Finite Differences at Chebyshev Points for Lu 

4 2.46 0.20 E2 0.80 El 1.0 1.75 1.75 
8 2.47 0.21 E3 0.87 E2 1.0 2.13 2.13 

16 2.47 0.32 E4 0.13 E4 1.0 2.30 2.30 
32 2.47 0.50 E5 0.20 E5 1.0 2.38 2.38 
64 2.47 0.80 E6 0.32 E6 1.0 2.43 2.43 

128 2.47 0.13 E8 0.52 E7 1.0 2.45 2.45 
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TABLE II 

Condition Number K(A -‘L,,) 

6 = 0.0 6 = 0.0 6= 1.0 6 = 10.0 6 = 10.0 
N y= 1.0 y = 10.0 y = 0.0 y = 0.0 y = 10.0 

4 1.38 2.25 I .45 2.29 1.61 
8 1.87 3.45 1.90 2.01 1.96 

16 2.16 4.30 2.15 2.28 2.41 

32 2.32 4.73 2.31 2.47 2.82 

64 2.40 4.92 2.38 2.85 3.25 
128 2.44 4.99 2.43 3.08 3.54 

Note. Lu = -u,, + 6u, + yu; Au = finite differences for Zu = +I,,. 

TABLE III 

Condition Number K(A -IL,,) 

6 = 0.0 6 = 100.0 6 = looo.o 
N y=lOO.O y = 0.0 y =o.o 

4 3.95 21.76 217.43 
8 17.70 19.55 195.39 

16 28.90 18.08 181.05 
32 35.89 19.18 177.83 
64 39.17 21.55 176.24 

128 40.57 24.32 204.05 

Note. Lu = --u,, + 6u, + yu; Au = finite differences for Yu = -u,, 

TABLE IV 

Lu = -(( 1 + lO”x*)u,),; Au = Finite Differences for Lu 

v=o v=l v=2 

N *mm K /I III,” K 1 in,” K 

4 1.04 2.49 1.11 5.03 1.13 7.09 
8 1.01 3.04 1.10 7.11 1.01 14.77 

16 1.00 3.27 1.00 7.70 1.00 21.65 
32 1.00 3.38 1.00 7.94 1.00 24.03 
64 1.00 3.43 1.00 8.06 1.00 24.44 

128 1.00 3.46 1.00 8.12 1.00 24.61 
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independently of N, although the bound is larger than for the constant coefficient 
operator. The condition number K is close to the one in Table I when a moderate 
perturbation is applied, otherwise it grows slowly and linearly with the total 
variation of a. 

When the coefficient a depends itself on the solution u (as in the full potential 
equation) one would not change the preconditioning matrix at each iteration, in 
order to save factorization time. This situation is simulated to a certain extent in 
Table V. The effects of preconditioning the spectral matrix of a variable coefficient 
operator by a constant coefficient operator matrix are reported. The spectrum of 
A -lLs,, is bounded independently of N. K is comparable with the one of Table IV 
when the perturbation is moderate, but it becomes noticeably worse when the dis- 
tance between the preconditioning and the spectral operators increases. In this case, 
if the factorization is carried out in a number of operations of the order of the num- 
ber of unknowns (in one dimension or with an incomplete factorization), the wor- 
sening of the condition number may not be balanced by the saving in factorization 
time (unless the computation of the entries of A is particularly expensive). 

The matrices A considered so far arise from a finite difference approximation of 
the operator 9 at the Chebyshev points. Even if 9 is formally self-adjoint, A is not 
symmetric, nor is L,,. Actually A splits up as A = D. A”, with D diagonal and A” 
symmetric. Some iterative techniques require the symmetry of the preconditioning 
matrix (see Sect. 3). This can be accomplished by discretizing a suitable variational 
formulation of the elliptic operator via finite elements as follows. 

If 9’~ = -(au,),, the bilinear form associated to 9’ is 

a(z.4, u) = 
s au,(uo), dx, (2.2) 
R’ 

where o(x) = (1 -x*)-“~. The form a(u, u) is continuous and coercive on the 

TABLE V 

Lu = -(( 1 + lO”n*)u,),; Au = Finite Differences for Yu = -u,, 

v=o v=l 

N Anin K I ITlO” K 

4 1.74 2.23 8.51 3.70 
8 1.48 3.07 4.70 7.61 

16 1.27 3.79 2.71 12.79 
32 1.16 4.27 1.83 18.46 
64 1.10 4.60 1.43 23.29 
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weighted Sobolev space HA,,(Q’) (cf. [2]), but it is not symmetric. However the 
“reduced” form 

C(u, II) = IQ, CIU,U,O dx (2.3) 

is still coercive and continuous on H&JL?‘), and trivially symmetric. Assuming u 
and v continuous and piecewise linear between contiguous Chebyshev knots, we 
associate a matrix A = {uti) to (2.3) by setting 

(2.4) 

where bk is continuous 
9u= -u,,, we have after 

1 

piecewise linear and #,Jx,) = 6,,. For instance, if 
dropping the common factor Z/N: 

1 -1 -1 
ajj=qfh:_,; , =zI; ajj-l aj,j + I = - 

hJ’ 
(2.5) 

(compare with (2.1)). The spectrum of A behaves like the spectrum of the 
corresponding finite difference matrix, and the preconditioning properties are only 
slightly worse, as shown in Table VI. 

Up to now we considered l-dimensional problems. In two dimensions one can 
still use a finite difference or finite element matrix, say B, in the preconditioning. 
The corresponding results are similar to those in one dimension. However, the 
exact “inversion” of such a matrix is more expensive, since the factors in its LU 
decomposition have a bandwidth of order O(N) instead of 0( 1). In order to over- 
come this drawback, different techniques of incomplete factorization have been suc- 
cessfully proposed (cf., e.g., [ll, 12, 41). The idea is to replace the exact factors L 
and U by some approximations z and 8, which retain a very sparse structure. z 
and 8 are computed by incomplete steps of Gaussian elimination, under the con- 
dition that certain quantities depending on the product z8 agree with the 

TABLE VI 

Lu= -ll,,; Au = Finite Elements at the Chebyshev Points for Lu 

N kin(A-‘Lsp) Lx(A -‘&,I K(A -‘L,,) 

4 1.25 3.29 2.63 
8 1.16 4.10 3.55 

16 1.13 4.53 3.99 
32 1.13 4.74 4.19 
64 1.13 4.84 4.29 

128 1.13 4.89 4.33 



322 CANUTO AND QUARTERONI 

TABLE VII 

Lu = -G(u,, - uyy; Au = Incompletely Factorized Finite Difference Matrix for LII 

a= 1.0 a = 10.0 a = 100.0 

N 1 mm K i, nun K 1 Ill,” K 

4 1.08 1.72 1.01 1.75 1.00 1.76 
8 1.06 2.72 1.03 2.43 1.01 2.13 

16 1.04 4.06 1.03 5.34 1.01 3.27 

corresponding quantities for B. The matrix A = z8 is then used in the precon- 
ditioning. 

In our computations, the incomplete factorization was done according to row- 
sums agreement condition (see [4]). Namely, let b(O) and bck) denote the diagonal 
and the off-diagonals of a mth order matrix B, i.e., bck) = {bi,i+k ( 1~ i, i + k < m}. If 
B is the five point finite difference matrix for a second-order operator at the 
Chebyshev points in the square, then only b (O), 6” I), and bckN’ are not identically 
zero. The incomplete factors 1 and D of B have ‘I(‘), T’-“, IcPN) and ii(‘), ii(l), ii 
respectively as nonzero (off)-diagonals. u -(‘) is chosen to be = 1.0, while the off- 
diagonal elements are recursively determined by the condition that u(+ ‘) E b(“) 
and a(*“‘) z bcfN), where A = zi? Finally, To’ is such that the sum of each row in A 
equals the corresponding sum in B. Thus we have, wherever the indices are between 
1 and m: 

TABLE VIII 

Lu = -(au,), - (&),; a = fi = 1 + 10x2y2; 
Au = Incompletely Factorized Finite 

Difference Matrix for Lu 

N Li” K 

4 1.09 3.29 
8 1.08 4.92 

16 1.04 9.33 
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TABLE IX 

Lu as in Table VIII 
Au = Incompletely Factorized Finite 

Difference for 6pu = --II,, - u.,( 

4 1.48 6.89 
8 1.44 10.94 

16 1.23 19.90 

In Tables VII-IX, we list some results about the preconditioning by an incom- 
pletely factorized finite difference matrix (for other results see [21]). Table VII 
refers to a constant coefficients operator. The different ratios between the coef- 
ficients of u,, and u.~~ are supposed to mimic the effect of the stretching of coor- 
dinates in a mapping process. The spectral matrix of a variable coefficients operator 
was preconditioned by the finite differences representation of the same operator 
(Table VIII), or by that of a constant coefficient operator (Table IX). 

Unlike the case of complete factorization, the condition number grows linearly 
with the number of unknowns. However, it ranges within moderate bounds (except 
when a different operator is used in the preconditioning). This gives evidence to the 
convenience of using incompletely factorized preconditioning matrices in spectral 
calculations. As for finite difference methods (see [ 12]), better results can be 
achieved, with slightly more computational effort, by a higher order incomplete fac- 
torization in which z and 8 have one more nonzero off-diagonal. 

3. A CONJUGATE GRADIENT METHOD 

Even if the differential operator L is self-adjoint, the matrix arising from a 
Chebyshev spectral approximation is not symmetric. Thus, one can apply the stan- 
dard conjugate gradient method (CG) to the normal equations of the precon- 
ditioned system. Alternatively, one can use CG-type methods for nonsymmetric 
systems, like those proposed by Vinsome [ 151, Young and Jea [ 193, Axelsson [ 11, 
or those by Concus and Golub [3], and Widlund [20]: the methods of the first 
class may require the storage of back steps of the solution (however, see Wong 
[21] for an application of a truncated version of [l] to spectral calculations), 
while the methods of the second class require that the symmetric part of the system 
be easily solvable. 

In the previous section it has been pointed out that the spectral matrix can be 
preconditioned using a symmetric positive definite matrix, connected with some 
finite element approximation of the elliptic operator. This suggests the use of the 
following preconditioned version of the CG method: Minimize 

J(u) = rTA-‘r r=L,,u-f (3.1) 
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by CG iterations in UP’ equipped with the inner product 

((u, u)) = UTAU. 

The corresponding algorithm is as follows. 
Given u” E Iw”, compute 

zO=A-‘(f-L,,uO) 

gO=A-‘L,T,zO, w” = go. 

Then set for k=O, l,..., 

(3.2) 

Uk+l- k 
u + ClkWk, 

((zk, ‘4 -%pwk)) 
- where ak = 

((A-‘L,,Wk, A-‘L,,Wk)) (3.3) 

z~+‘=z~-~~A-‘L~~w~ 

g 
k+l=A-lLTZk+l 

SP 

Wk+‘, ((g 
k+l 

3 gk”)) 
g k+‘+Yk+‘wk? where yk + ’ = 

((gk> gk)) * 

Note that gk+ ’ is the Frechet derivative of the functional J(U) computed at 
u = uk+’ with respect to the inner product (3.2). Algorithm (3.3) does not coincide 
with the classical conjugate gradient method applied to the normal equations. 
However, the Frechet derivative of J is A-‘LTpAp ‘Lsp, which shows that the 
method behaves qualitatively as a CG method for the normal equations. It is 
precisely the CG method for solving the normal equations associated with 
(A 4/2),TpA -(‘/2,)(A ‘4) = A -(‘iz)J: 

It is not difficult to see that the computation of ak and yk+ ’ can be done in terms 
of Euclidean products, which do not require the multiplication by the precondition- 
ing matrix A. The product LTptk+’ can be executed through fast Fourier trans- 
forms, and the entries of the matrix L,, need not to be computed. Actually, assume 
that Lspu = -[Z,,,(~lu,~)]~ is the Chebyshev pseudospectral approximation of 
Lu = -(c(u,),, where Z,w is the Nth degree polynomial interpolating w  at the 
nodes xi, j = O,..., N. We identify an Nth degree polynomial vanishing at x = _+ 1 
with the vector of its values at x,, j = l,..., N- 1. Recall that 

s 1 

u(x) v(x) o(x) dx 
-1 

=~~~~lu(xj)U(Xj)+~{U(~l)U(~l)+U(l)~(l)} (3.4) 

for any U, v such that uu E PzN ~, . Then 

(u, L,Tpv)Iw”w = (Lspu, V&l = -- ; j’, C~,v(~~,)lx~~ dx. 
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Integration by parts and several applications of (3.4) yield 

where 
Ls’,u = -(Zp/Z), + /3z 

(3.5) 
2 = a(u, + Bu), B(x)=$(x)=&. 

Given the values of v or z at the Chebyshev points, we compute their coefficients 
in the expansion in Chebyshev orthogonal polynomials of first kind, using the fast 
Fourier transform (FFT). The coefficients of the x derivative can then be easily 
computed by simple recursion formulae. Finally, the values of the derivative at the 
collocation nodes can be obtained by inverse FFT (see [9]). Similar expressions 
hold in two dimensions. 

Algorithm (3.3) was used to compute the spectral solution for the test problems: 

Lu - -(au,), =f, -l<x<l, 

a- 1.0 or a(x) = 1 + 10x2 

u(x) = sin rrx, 

(3.6) 

and 

Lu E -(au,), - (auy)y =f, -l<x,y<l, 

a= 1.0 or a(x, y) = 1 + 1ox2y* 

u(x, y) = sin 7cx sin 7ry. 

(3.7) 

In the Tables X and XI we report the minimum number NIT of iterations required 
to get RES < 10e8, where the relative residual is defined by 

RES’=u, r=f-LLspu. 
(hf) 

(3.8) 

TABLE X 

CG Method for Problem 3.6 

N 

4 
8 

16 
32 
64 

128 

NIT 

1 
3 
7 

14 
20 
26 

a= 1.0 

RES 

0.31 E-17 
0.12 E-16 
0.53 E-14 
0.58 E-8 
0.52 E-8 
0.52 E-8 

ERR NIT 

0.18 I3 1 
0.31 E-3 3 
0.27 E-l 1 8 
0.12 E-9 16 
0.84 E-10 24 
0.47 E-l 1 29 

a = 1 + 10x’ 

RES 

0.90 E-l 7 
0.19 E-13 
0.13 E-15 
0.60 E-12 
0.24 E-8 
0.35 E-8 

ERR 

0.11 E-l 
0.40 E-3 
0.61 E-l 1 
0.88 E-14 
0.18 E-10 
0.13 E-10 

Note. Au = finite element matrix for Lu. 

58160/2-11 
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TABLE XI 

CG Method for Problem 3.7 

a= 1.0 c? = 1 + 1Ox~JJ~ 

N NIT RES ERR NIT RES ERR 

4 21 0.31 E-8 0.18 I3 32 0.88 E-8 0.10 E-l 
8 44 0.75 E-8 0.31 E-3 72 0.99 E-8 0.15 E-3 

16 80 0.99 E-8 0.89 E-9 70 0.13 E-2 0.56 E-4 

Note. Au = incompletely factorized linite element matrix for Lu. 

The initial guess was u” = 0. ERR is the corresponding relative error on the solution 

where [lull = (u, ~4)“~ is the discrete 12-norm on the grid. 
It is seen that the number of iterations NIT to match the stopping criterion 

RES < lop8 increases sublinearly in one dimension and linearly in two dimensions 
with the degree N of polynomials. This seems qualitatively in accordance with the 
behavior of the condition number of the matrix A -‘Lsp (see Table VI). The slow 
convergence of the method in two dimensions is due to the fact that the con- 
vergence factor behaves like the one of a CG method for the normal equations. 
Moreover, the finite element matrix A has slightly worse preconditioning properties 
than its finite difference counterpart. 

4. THE DUFORT-FRANKEL (DF) METHOD 

The DuFort-Frankel method can be applied to the numerical solution of steady- 
state equations 

Bu=g (4.1) 

(the eigenvalues of B having positive real parts) as an iterative procedure depending 
on two positive parameters 6 and y: 

Uk+l-Uk-l 

26 
=g-Buk-y(uk+1-2uk+ukp1). (4.2) 
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This can be written as a one step method in the form 

Uk+l 

[ 1 Uk 
=C(B;~,Y)[~~~,]+~[~], (4.3) 

with proper definition of the matrix G. 
The DF scheme is a stationary second-degree method of the type considered in 

[17, IS]. In connection with spectral methods it has been studied by Gottlieb and 
Gustafsson [7] and by Funaro [S]. If B has real strictly positive eigenvalues (the 
largest and the smallest eigenvalues being denoted by A,,, and Amin, respectively), 
then it is seen that the method is convergent if 

Moreover, Funaro [S] proves that the spectral radius p(G) as a function of 6 and y 
has a curve of local minima (with respect to increments in the 6 or in the y direction 
separately) given by the branches of hyperbola 

1 + h2Ak,, Anin + Anax 
y= 462i,,, 

if y< 
4 ' (4.5) 

(4.6) 

p(G) attains its absolute minimum at the intersection of the two branches, i.e., at 
the “optimal parameters” 

lmin + Arnax 
4 ' 

(4.7) 

where 

JXi-Xi- 1 
p(G)opt=P* =Jm+ 1’ (4.8) 

The DF method with the optimal parameters (4.7) was applied to the soluion of 
the test problems (3.6)(3.7) by a preconditioned spectral method, as shown in 
Tables XII and XIII. Hence, we set in (4.2) Bu = A - ‘LSpu and g = A ~ ‘f, where A is 
the finite difference matrix associated to L, incompletely factorized in two dimen- 
sions. One DF iteration requires one multiplication z = Lspuk and one forward- 
backward substitution Aw = z. The optimal parameters were computed using the 
exact values of ~min and A,,, obtained in the previous section; only for case N= 32 
of Table 4.2 the optimal parameters were computed by an extrapolation procedure, 
described below. The initial guess was u” = 0, while ur was computed by a step of 
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TABLE XII 

DF Method with Optimal Parameters for Problem (3.6) 

a3 1.0 a = 1 + 10x* 

N NIT RES ERR NIT RES ERR 

4 9 0.33 E-8 0.18 EO 19 0.41 E-8 0.11 E-l 
8 12 0.19 E-8 0.13 E-3 24 0.97 E-8 0.40 E-3 

16 12 0.98 E-8 0.39 E-8 26 0.52 E-8 0.56 E-8 
32 14 0.25 E-8 0.14 E-8 29 0.37 E-8 0.79 E-8 
64 14 0.29 E-8 0.29 E-8 28 0.83 E-8 0.75 E-8 

128 14 0.57 E-8 0.56 E-8 28 0.88 E-8 0.86 E-8 

Note. Au = finite differences for Lu. 

the modified Euler method for the preconditioned system. NIT, RES, and ERR are 
defined as in Section 3, Equations (3.8)-(3.9). 

It is seen that the number of iterations needed to satisfy the stopping test is boun- 
ded as a function of N in the l-dimensional tests, while it is linearly growing in two 
dimensions. This corresponds to the behavior of the condition number of the matrix 
A - ‘LsP, as reported in Tables IV and VIII. 

Moreover, NIT is comparable with the one relative to the CG method in one 
dimension, and definitely smaller in two dimensions. Since one DF iteration is 
faster than one CG iteration (by a factor of 1.7 both in one dimension and in two 
dimensions), we conclude that the DF method with optimal parameters exhibits a 
globally better behavior than the CG method on the tested problems. 

The speedup in the convergence due to the use of a preconditioning technique is 
particularly impressive for the DF method. This is suggested by formula (4.8), 
which shows the dependence of the optimal spectral radius on the condition num- 

TABLE XIII 

DF Method with Optimal Parameters for Problem (3.7) 

a= 1.0 a = 1+ 1ox*y2 

N NIT RES ERR NIT RES ERR 

4 9 0.70 E-8 0.18 EO 15 0.20 E-8 0.10 E-l 
8 14 0.97 E-8 0.13 E-3 20 0.84 E-8 0.15 E-3 

16 20 0.56 E-8 0.11 E-8 30 0.98 E-8 0.64 E-8 
32 59 0.86 E-8 0.48 E-8 49 0.82 E-8 0.92 E-9 

Note. Au = incompletely factorized finite difference matrix for Lu. 
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TABLE XIV 

DuFort-Frankel Method without Preconditioning 

N 4 8 16 32 64 

NIT 23 84 321 >400 %400 

ber of B. Table XIV reports the performance of the DF method with optimal 
parameters without preconditioning (i.e., Bu = L,,u) for problem (3.6) with c( = 1 
(compare with Table XII). 

The practical interest of formulae (4.7) relies on the explicit knowledge of ~,in 
and La,, which is rarely the case. Approximate values of 6* and y * may be 
obtained in different ways, for instance, by estimates on the eigenvalues of B or by 
extrapolation of correct values of 6* and y* computed on coarser grids. It was 
found that linear extrapolation on the parameters as functions of N may lead to 
negative values of y*. Instead, linear extrapolation on the ratios of contiguous 
values of the parameters gives accurate answers. As already mentioned, the case 
N= 32 in Table XIII was run with extrapolated “optimal” parameters. 

Unfortunately, the method appears to be rather sensitive to the choice of 
parameters, especially around the curve of optimality. The qualitative behavior of 
p(G) as a function of y for fixed 6 (or conversely) is similar to the one encountered 
in an SOR method. Table XV shows the values of NIT for problem (3.6) with 
LY = 1 + 10x2y2, N= 32, and finite differences preconditioning, as a function of y and 
6. 

The previous considerations suggest that the DF method, although in principle 
very powerful, may be poorly efficient in applications if the user attempts to use a 
fixed value of the constants 6 and y in all the iterations. 

However, it is possible to transform the DF method into a completely parameter- 
free iterative scheme following a “minimal residual’ strategy which has been proven 
successful in connection with other iterative schemes. The parameters y and 6 are 
computed at each iteration in order to minimize the 12-norm of the residual 

TABLE XV 

NIT as a Function of y and 6 

4 $400 193 438 $400 $400 

2 >400 98 162 416 $400 
1 >4ocl 49 97 183 392 
t >400 87 61 134 196 

4 $400 147 145 86 151 

YLIMIY * 1 2 4 8 
+ 
Y/Y* 
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r = f - Lspu. Given uk, rk and uk-I, rk- ’ then uk+’ and rk+ ’ are defined according 
to (4.2) as 

Uk+l =clA~‘rk+c2uk+c3uk-’ 

rk+‘= --c L 1 SP 
A-‘rk+C rk+C rk-1 2 3 > 

where 

(rk+l, rk+l) is minimized if one sets in (4.10), 

(4.9) 

(4.10) 

(4.11) 

where p=rk-rk-’ 

P=(P9q)/(P>s). ’ 
q = L,, A ~ ‘rk, s = rk + p, a = (p, r”-‘HP, $1, and 

In order to derive (4.1 l), let us differentiate cl, c2, and c3 with respect to 6 and y. 
We get the following identities: 

drk+’ 
-=446$(y, 6){6L,,A-‘rk+rk-rkpl) 

4 

drk+’ 
-= -2t+G(y,S){L,,A~‘rk-2y(rk-rk-I)}, 

dl5 

where $(y, 6) = l/( 1 + 2~6) is a positive bounded function. The system 

can now be written as 

(6L,,A-‘rk+rk-rk-‘, rkfl)=O 

(L,,Aelrk - 2y(rk - rk-‘), rk+l) = 0. 

Suitable combinations of these equations show that 

(rk-rkp’, rk+‘)=O 

(LspAwlrk, rk+l) = 0. 

(4.12) 

(4.13) 
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TABLE XVI 

MRDF Method for Problem (3.6) 

a= 1.0 a = 1+ 10x* 

N NIT RES ERR NIT RES ERR 

4 1 0.11 E-17 0.18 Eo 1 0.70 E-17 0.11 E-l 
8 5 0.48 E-9 0.13 E-3 8 0.55 E-8 0.40 E-3 

16 7 0.71 E-8 0.38 E-9 11 0.46 E-8 0.35 E-8 
32 4 0.56 E-9 0.13 E-9 9 0.48 E-8 0.22 E-8 
64 3 0.10 E-9 0.20 E-10 3 0.45 E-8 0.18 E-8 

128 2 0.33 E-9 0.68 E-10 2 0.10 E-8 0.56 E-9 

Note. Au = linite differences for Lu. 

Using the second identity in (4.9) we get the second identity in (4.11) by (4.12). 
Now, using (4.9) and some more algebra we deduce from (4.13) the expression for 6 
in (4.11) and then the expression for y in (4.11). 

This algorithm can be called “minimal residual DuFort-Frankel” (MRDF) 
method. Although formally similar to Orthores [ 11, a variant of the conjugate 
gradient method proposed in [19], our method differs from it in the way the 
acceleration parameters are determined. One MRDF iteration requires one 
forward-backward substitution AZ = rk and one multiplication w  = L,,s; moreover, 
rk-’ needs to be stored with uk-r. Note that if u1 = ZL’ but Y’ #O the algorithm can- 
not converge. Hence u1 should be chosen in such a way that u’ --u” and Y’ be 
roughly comparable. For instance u’ can be computed from u” by one step of the 
minimal residual Richardson method (see Sect. 5(b)). 

Tables XVI and XVII are analogous to Tables XII and XIII, except that the 
MRDF method was used instead of the DF method with optimal parameters. In 
one dimension, the gain in the speed of convergence over the DF method with 
optimal parameters is spectacular, although this may depend on particular cir- 

TABLE XVII 

MRDF Method for Problem (3.7) 

a= 1.0 a: = 1 + lOx~y2 

N NIT RES ERR NIT RES ERR 

4 7 0.23 E-8 0.18 HI 10 0.84 E-8 0.10 E-l 
8 13 0.47 E-8 0.13 E-3 20 0.17 E-8 0.15 E-3 

16 19 0.63 E-8 0.80 E-9 29 0.90 E-8 0.19 E-8 
32 36 0.50 E-8 0.96 E-9 46 0.78 E-8 0.86 E-9 

Note. Au = incompletely factorized finite difference matrix for Lu. 
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cumstances. In two dimensions, the improvement of the performances is less 
impressive. 

However, one must not forget that the main improvement of the MRDF over the 
DF method relies on the complete automatization in the choice of parameters. 

5. COMPARISONS WITH OTHER METHODS 

The preconditioned CG and DF methods were compared with two other iterative 
techniques recently suggested for spectral calculations: the Richardson iteration 
proposed by Orszag [13], and the minimal residual Richardson method proposed 
by Wong [21]. We briefly review these techniques and we report for the sake of 
completeness their behavior on the test problems used throughout this paper. 

(a) Richardson Method [13] 

Given u’, compute u k+ ’ from uk by solving 

AUk+‘=AUk-a(LspUk--f), (5.1) 

where 0 < c1< 2/L,,,,,, ;Imin and A,,,,, being the smallest and the largest eigenvalue of 
A - ‘LSp. The optimal value of tx, 

2 
ci 

Opt = ~min + ~,,, ’ (5.2) 

was computed exactly and used in the following tests, as shown in Tables XVIII 
and XIX. One iteration requires one multiplication z = Lspw and one forward- 
backward substitution Ax = b. 

TABLE XVIII 

Richardson Method for Problem (3.6) 

a= 1.0 a = 1 + 102 

N NIT RES ERR 

4 8 0.90 E-8 0.18 Eo 
8 17 0.81 E-8 0.13 E-3 

16 20 0.77 E-8 0.54 E-8 
32 21 0.70 E-8 0.64E-8 
64 22 0.70 E-8 0.41 E-8 

128 22 0.42 E-8 0.51 E-8 

NIT RES ERR 

33 0.63 E-8 0.11 E-l 
62 0.95 E-8 0.4OE-3 
71 0.82 E-8 0.68 E-8 
73 0.96 E-8 0.88 E-8 
74 0.97 E-8 0.94 E-8 
75 0.87 E-8 0.86 E-8 

- 

Note. Au = finite differences for Lu. 
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TABLE XIX 

Richardson Method for Problem (3.7) 

a3 1.0 a = 1 + 1ox*y2 

N NIT RES ERR NIT RES ERR 

4 12 0.87 E-8 0.18 m 23 0.84 E-8 0.10 E-l 
8 24 0.71 E-8 0.13 E-3 45 0.69 E-8 0.15 E-3 

16 39 0.92 E-8 0.92 E-8 90 0.99 E-8 0.21 E-8 

Note. Au = incompletely factorized finite difference matrix for Lu 

(b) Minimal Residual Richardson (MRR) Method [21] 

In the previous scheme, compute o( = ak at each iteration in order to minimize the 
residual (rk+ ‘, rk+ ‘). Hence one gets 

Given u’, compute r” =f- LSPuo, z” = A - ‘r’, then set 

k+l- k 
u - u +akzk 

where 

(5.3) 

Z 
k+l =A-lrk+l, 

The computational effort per iteration is comparable to that of the Richardson 
method, (see Table XXII). Note that this method is obtained from the previous one 
by the same strategy used in deriving the MRDF from the pure DF method. 

TABLE XX 

MRR Method for Problem (3.6) 

a= 1.0 a= 1+ 10x' 

N NIT RES 

4 1 0.12 E-17 
8 10 0.32 E-8 

16 8 0.78 E-8 
32 5 0.56 E-9 
64 4 0.14 E-9 

128 3 0.34 E-9 

ERR 

0.18 Eo 
0.13 E-3 
0.29 E-9 
0.19 E-l 1 
0.12 E-10 
0.48 E-10 

NIT RES 

1 0.5 E-17 
13 0.22 E-10 
13 0.76 E-8 
10 0.62 E-8 
4 0.58 E-8 
3 0.16 E-8 

ERR 

0.11 E-l 
0.40 E-3 
0.28 E-8 
0.37 E-8 
0.15 E-8 
0.12 E-8 

Note. Au = finite differences for Lu. 
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TABLE XXI 

MRR Method for Problem (3.7) 

a= 1.0 @I = 1+ 10x2$ 

N NIT RES ERR NIT RES ERR 

4 9 0.98 E-8 0.18 Eo 18 0.96 E-8 0.10 E-l 
8 18 0.11 E-8 0.13 E-3 22 0.29 E-8 0.15 E-3 

16 23 0.90 E-8 0.53 E-8 32 0.14 E-8 0.60 E-9 
32 58 0.88 E-8 0.19 E-8 58 0.89 E-8 0.43 E-9 

Note. Au = incompletely factorized finite difference matrix for Lu. 

(c ) Comparisons 

The speed of convergence of the methods previously discussed was compared on 
the basis of the number of iterations and the CPU time. Two significant cases were 
considered. 

Case 1. Problem (3.6) with c(= 1 + 10x*, N= 128, i.e., 127 grid points in the 
interval ( - 1, 1). 

Case 2. Problem (3.7) with a = 1 + 10x2y2, N= 32, i.e., 31 x 31 grid points in the 
square (- 1, l)*. 

Define for the sake of simplicity the following labels: 

(A) Richardson method (5.1) with optimal parameter (5.2) 

(B) Minimal residual Richardson method (5.3) 

(C) Conjugate gradient method (3.3) 

(D) DuFort-Frankel method (4.2) with optimal parameters (4.7) 

(E) Minimal residual DuFort-Frankel method (4.9). 

We used the standard finite difference (finite element for method (C)) precon- 
ditioning matrix on the spectral grid, incompletely factorized in Case 2 according to 
the method described in Section 2. The optimal parameters were computed with the 
exact values of &, and A,,,. a0 = 0 was the initial guess. 

The results in Figs. 1 and 2 are in a sense machine- and programmer-indepen- 
dent. The relative performances of the methods can be analyzed according to the 
global CPU-time consumption, using Table XXII, Hence, Figs. 1 and 2 also sum- 
marize the relative performances of the methods in terms of cost, except for method 
(C) which is roughly 1.7 times slower than the others. 
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FIG. 1. Case I: convergence histories vs number of iterations. 
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NIT 

FIG. 2. Case 2: convergence histories vs number of iterations. 
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TABLE XXII 

CPU-Time per Iteration in Hours 

Method A B C D E 

Case 1 0.212 E-3 0.280 E-3 0.467 E-3 0.273 E-3 0.285 E-3 
Case 2 0.128 E-2 0.128 E-2 0.217 E-2 0.127 E-2 0.130 E-2 

COMMENTS 

Globally, the results confirm the utility of preconditioning techniques in spectral 
calculations: few iterations are needed to reach the spectral accuracy, which 
corresponds in the test problems to a relative residual of lo-i8. 

Methods (A) and (D) behave exactly like predicted by the theory: the error is 
reduced at each iteration by a factor (K - 1 )/(K + 1) for method (A), and 
cJ;;- lM&+ 1) f or method (B) (K is the condition number of the precon- 
ditioned matrix). 

The conjugate gradient method gives contradictory answers in terms of speed of 
convergence: in one dimension the factor of reduction of the error is smaller than 
that for method (D), while in two dimensions it is comparable with that of method 
(A). In both cases, the method turns out to be not competitive in terms of computer 
time. 

The “minimal residual” strategy is always winning over the “optimal parameter” 
strategy, also where the exact optimal parameters can be used. In particular, the 
MRR method is superior, even to the Richardson method with Chebyshev 
acceleration, proposed in [13]. (According to [ 13, p. 863, the Chebyshev 
acceleration increases the speed of Richardson method by a factor of 2, although it 
requires the extra-storage of the vector uk-‘.) 

The MRDF method requires the storage of ukP ’ and rk- ‘, being a 2-step 
method. However, the extra memory required results in a better accuracy, and the 
MRDF method appears in all cases the fastest method among those tested in this 
report. 

CONCLUSIONS 

The iterative methods proposed here have been compared with the most widely 
used iterative methods for solving systems arising from spectral approximations 
(see, e.g., the introductory paper by Gottlieb, Hussaini and Orszag in [16]). 

Our investigation suggests that the use of conjugate gradient techniques together 
with spectral methods is quite delicate and will require further analysis; precisely, 
CG techniques which work well for finite difference or finite element 
approximations do not seem to be successfully transportable in a spectral context. 
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On the other hand, the second proposed method is always competitive with the 
best performing iterative method for spectral systems used so far. The improvement 
in speed of convergence of our method is more and more appreciable as the con- 
ditioning of the algebraic system gets better. 
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